본문 바로가기
📖 Coding Test/Codility

[Swift] Codility Lesson 4 - FrogRiverOne

by hyebin (Helia) 2022. 7. 23.

A small frog wants to get to the other side of a river. The frog is initially located on one bank of the river (position 0) and wants to get to the opposite bank (position X+1). Leaves fall from a tree onto the surface of the river.

You are given an array A consisting of N integers representing the falling leaves. A[K] represents the position where one leaf falls at time K, measured in seconds.

The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X (that is, we want to find the earliest moment when all the positions from 1 to X are covered by leaves). You may assume that the speed of the current in the river is negligibly small, i.e. the leaves do not change their positions once they fall in the river.

For example, you are given integer X = 5 and array A such that:

A[0] = 1 A[1] = 3 A[2] = 1 A[3] = 4 A[4] = 2 A[5] = 3 A[6] = 5 A[7] = 4

In second 6, a leaf falls into position 5. This is the earliest time when leaves appear in every position across the river.

Write a function:

public func solution(_ X : Int, _ A : inout [Int]) -> Int

that, given a non-empty array A consisting of N integers and integer X, returns the earliest time when the frog can jump to the other side of the river.

If the frog is never able to jump to the other side of the river, the function should return −1.

For example, given X = 5 and array A such that:

A[0] = 1 A[1] = 3 A[2] = 1 A[3] = 4 A[4] = 2 A[5] = 3 A[6] = 5 A[7] = 4

the function should return 6, as explained above.

Write an efficient algorithm for the following assumptions:

N and X are integers within the range [1..100,000];

each element of array A is an integer within the range [1..X].

 

링크

 

FrogRiverOne coding task - Learn to Code - Codility

Find the earliest time when a frog can jump to the other side of a river.

app.codility.com

 

문제 분석

  • 현재 0의 위치에 있는 개구리가 X+1 위치로 가기 위해 걸리는 시간을 계산하는 문제이다.
  • X+1 위치로 가기 위해서는 1부터 X까지의 위치에 모두 나뭇잎이 떨어져 있어야 한다.
  • 낙엽을 나타내는 N개의 정수로 구성된 배열 A가 주어진다.
  • A[K]는 시간 K에서 나뭇잎이 떨어지는 위치를 나타내며, 초 단위로 측정된다.
ex) X = 5, A = [1, 3, 1, 4, 2, 3, 5, 4]

A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4

위치 6에 도착하기 위해서는 1부터 5까지 위치에 나뭇잎이 떨어져 있어야 한다.
6초에 5에 나뭇잎이 떨어지며, 모든 위치에 나뭇잎이 있는 가장 빠른 시간이다.

 

해결방안

  1. key와 value 모두 Int형인 딕셔너리를 선언
  2. 딕셔너리에 위치(요소 값)를 key로 하고, 시간(index)을 value로 저장
    • 딕셔너리에 key의 value가 이미 존재한다면, 이미 저장된 value와 새로운 value 중 작은 값을 선택
  3. key를 1부터 X까지 증가시키며 key에 value가 존재하는지 확인
    • value가 없다면 X+1까지 갈 수 있는 방법이 없다는 것을 의미, -1 반환
    • value가 있다면 다른 key의 value와 비교하여 큰 값을 변수에 저장

Solution

public func solution(_ X : Int, _ A : inout [Int]) -> Int {
    var dic = [Int: Int]()
    var re = -1

    for (index, n) in A.enumerated(){
        if dic[n] == nil{
            dic[n] = index
        }else{
            dic[n] = min(dic[n]!, index)
        }
    }

    for i in 1...X{
        if dic[i] == nil{
            return -1
        }
        re = max(re, dic[i]!)
    }

    return re
}

  • 시간 복잡도: O(N)
반응형

댓글